Harnack Type Inequality on Riemannian Manifolds of Dimension 5. Samy Skander Bahoura
نویسنده
چکیده
We give an estimate of type sup× inf on Riemannian manifold of dimension 5 for Yamabe type equation. Mathematics Subject Classification: 53C21, 35J60 35B45 35B50
منابع مشابه
Harnack Type Inequality: the Method of Moving Planes
A Harnack type inequality is established for solutions to some semilinear elliptic equations in dimension two. The result is motivated by our approach to the study of some semilinear elliptic equations on compact Riemannian manifolds, which originated from some Chern–Simons Higgs model and have been studied recently by various authors.
متن کاملHarnack Inequality for Nondivergent Elliptic Operators on Riemannian Manifolds
We consider second-order linear elliptic operators of nondivergence type which is intrinsically defined on Riemannian manifolds. Cabré proved a global Krylov-Safonov Harnack inequality under the assumption that the sectional curvature is nonnegative. We improve Cabré’s result and, as a consequence, we give another proof to Harnack inequality of Yau for positive harmonic functions on Riemannian ...
متن کاملDifferential Harnack Inequalities on Riemannian Manifolds I : Linear Heat Equation
Abstract. In the first part of this paper, we get new Li-Yau type gradient estimates for positive solutions of heat equation on Riemmannian manifolds with Ricci(M) ≥ −k, k ∈ R. As applications, several parabolic Harnack inequalities are obtained and they lead to new estimates on heat kernels of manifolds with Ricci curvature bounded from below. In the second part, we establish a Perelman type L...
متن کاملLOCAL GRADIENT ESTIMATE FOR p-HARMONIC FUNCTIONS ON RIEMANNIAN MANIFOLDS
For positive p-harmonic functions on Riemannian manifolds, we derive a gradient estimate and Harnack inequality with constants depending only on the lower bound of the Ricci curvature, the dimension n, p and the radius of the ball on which the function is de ned. Our approach is based on a careful application of the Moser iteration technique and is di¤erent from Cheng-Yaus method [2] employed ...
متن کاملOn Manifolds and Some Liouville Theorems of Porous Media Equations
(1.1) ut = ∆F (u) on a complete Riemannian manifold (M,g) of dimension n ≥ 1 with Ric(M) ≥ −k for some k ≥ 0. Here F ∈ C2(0,∞), F ′ > 0, and ∆ is the Laplace-Beltrami operator of the metric g. There is a lot of literature on this kind of topics. For example, related problems such as Porous Media Equations have been considered by D.G. Aronson [1], G. Auchmuty and D. Bao [2], M.A. Herrero and M. ...
متن کامل